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Structure of a hard-sphere fluid near a rough surface: A density-functional approach
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The density-functional theory of Evans@in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson
~Dekker, New York, 1992!# and Tarazona@Phys. Rev. A31, 2672~1985!# is used to study an inhomogeneous
fluid near a rough surface or pore composed of grooves consisting of a periodic array of saw-toothed wedges.
This involves a two-dimensional formulation of this approach, in contrast to the one-dimensional formulations
that generally have been used previously. The agreement with the simulations of Schoen and Dietrich@Phys.
Rev. E56, 499 ~1997!# is good.@S1063-651X~98!09305-2#

PACS number~s!: 61.20.Ne, 68.45.2v
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I. INTRODUCTION

In recent years significant progress has been made in
derstanding fluid behavior in pores of different geometry@1–
4#. In the majority of the theoretical studies, the substr
walls have been modeled by potentials that vary only in
direction perpendicular to the surface and are translation
invariant in lateral directions. Obviously, even for perfe
crystals this is a simplification because of the atomic cor
gation of the substrate@5#. Moreover, real surfaces are us
ally rough, so the fluid is exposed to a geometrically hete
geneous wall.

The effects of geometrical heterogeneity on the adso
tion of fluids have been studied experimentally and theor
cally @6–19#. Although most theoretical methods that ha
been used are coarse-gained approaches that laterally
age the surface nonuniformity over the local height variat
of the substrate@10–13#, some studies based on the weight
local density theory@3# have also been undertaken@16–19#.
However, our understanding of the microscopic structure
a fluid that fills the grooves and covers the tips of a geome
cally heterogeneous substrate is far from being satisfact

Among the common techniques in liquid state theo
@20#, density-functional theories@3# have been shown to b
both computationally simple and reliable for the descript
of simple liquids in an inhomogeneous phase. In this ca
the most successful density-functional theories are those
involve a coarse-gained average density@3#. In a recently
published paper, Schoen and Dietrich@21# have analyzed a
hard-sphere fluid exposed to a periodic array of wedges
using the grand canonical ensemble Monte Carlo~GCEMC!
simulation technique. In their model, the attractive forc
between the fluid particles and the substrate are absent;
the results obtained illustrate the purely entropic effects
the spatial confinement on the fluid structure. It is interest
to test the predictions of a version of the density-functio
theory against the Schoen-Dietrich data. The principal aim
our work is thus to perform such a test and, if successful
justify the application of this approach to more complicat
geometries and interactions. Our description is based on
equations developed from the Evans-Tarazona version
density-functional theory@3,22#.
571063-651X/98/57~5!/5539~5!/$15.00
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II. THEORY

The model that we use is identical to that studied
Schoen and Dietrich; however, we employ a slightly diffe
ent system of coordinates. The sketch of the system is g
in Fig. 1. The unit cell consists of two oppositely placed ha
wedges of dihedral angleg in theOXZ plane. The corner of
the wedge is atx50 and two tips are atx5sx/2 and2sx/2.
The lower and upper tips are separated by the distancesz .
The system is periodically extended in thex direction and is
infinite in they direction~perpendicular to the figure plane!.
The fluid particles interact via the hard-sphere potential.

u~r !5 H0,
`,

r ,s
r .s. ~1!

If we consider only one-fourth of the cell shown in Fig.
defined by 0,x,sx/2 and 0,z,sz/21sx/2 tan(g/2), then
the substrate-fluid potential is given by

FIG. 1. Side view of the unit cell of the system consisting of tw
opposite hard wedges of side lengths8 and dihedral angleg in the
OXZ plane. The corner of the lower wedge is located atx50 and
z50 and two tips atx52sx/2 andsx/2 are separated by a distanc
sz . The system is periodically extended in thex direction.
5539 © 1998 The American Physical Society
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v~z,x!5 H0,
`,

z.x/tan~g/2!

z,x/tan~g/2!. ~2!

The fluid is inhomogeneous in both thez andx directions;
the grand potential can be written as@3#

V@r~x,z!#5F@r~x,z!#1E r~x,z!@v~x,z!2m#dx dy dz,

~3!

FIG. 2. Cut through the density distributionr(x,z) by the plane
x50.36 as a function ofz* 5z/s for g5p/2. The solid line de-
notes the density-functional result, whereas points are the GCE
data@21#. The calculations have been performed atrb* 50.7016.
wherer(x,z) is the singlet number density,F@r(x,z)# is the
Helmholtz free energy, andm is the chemical potential. The
Helmholtz free-energy functional is broken into an ideal a
an excess part

F@r~x,z!#5F id@r~x,z!#1Fex@r~x,z!#. ~4!

The ideal part is known exactly,

F id@r~x,z!#5kTE dr @r~x,z!@ ln L3r~x,z!21#, ~5!

whereL is the usual de Broglie wavelength. The excess f
energy is obtained using the weighted density approxima
@22#

Fex@r~x,z!#5E r~x,z! f ex@ r̃~x,z!#dr . ~6!

In the abovef ex is the excess~over ideal gas! free energy per
particle and the weighted densityr(x,z) is given by

r̃~x,z!5E r~z8,y8!W~ ur2r 8u!dr 8, ~7!

with W(r ) being the Tarazona weighting function given
Ref. @23#.

At equilibrium, dV@r(x,z)#/dr(x,z)50; thus we obtain

C

cal

FIG. 3. Dependence of the cuts through the density distributionr(x,z) by the planex50 on the distancez for ~a! and~b! g5p/2, ~c!

g5p/3, and~d! g52p/6. There are two panels in~b! and ~c! with the corresponding left- and right-hand side descriptions of the lo
density axis. The curves from bottom to top in~a! have been calculated atrb50.1, 0.3, and 0.5, respectively. In~b!–~d! the solid lines are
at rb50.7, whereas the dashed lines are atrb50.8.
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57 5541STRUCTURE OF A HARD-SPHERE FLUID NEARA . . .
r~x,z!5exp$2@kT ln rbmex2v~x,z!2F~x,z!#/kT%,
~8!

whererb is the density of a bulk~reference! fluid that is in
equilibrium with the confined fluid,mex is its excess chemi
cal potential, and

F~x,z!5 f ex@ r̃~x,z!#

1E dr̃~x8,z8!

dr~x,z!
r~x8,z8! f ex8 @ r̃~x8,z8!#dr 8.

~9!

In the abovef ex8 is the derivative off ex with respect to the
density.

If the Carnahan-Starling equation of state@24# is used,
then

f ex~r!52/~12h!11/~12h!223 ~10!

and

mex5
4h23h2

~12h!2 1
11h1h22h3

~12h!3 , ~11!

whereh5ps3r/6 is the packing fraction. Of course, expre
sions~10! and ~11! can be simplified. However, it was con
venient to use this form in our computer program.

The method of solution of the density profile equation~8!
was based upon a standard iterational procedure. In the
jority of the calculations that we performed, we used a m
size of 0.025s along each axis; also some of the calculatio
were made with a smaller grid size equal to 0.02s. The sys-
tem size is the same as in the work of Schoen and Diet
@21#, namely, sz512s and s85Asx

21sz
2510s ~for the

meaning of the symbols see Fig. 1!. All the calculations have
been carried out on the BYU Silicon Graphics Power Ch
lenge computer with eight processors.

III. RESULTS AND DISCUSSION

To check the reliability of the computational scheme th
has been used we have calculated the density profile for
system withg5p, i.e., for a flat wall. The density profile
have been compared with both the Monte Carlo data
Schoen and Dietrich@21# at rb* 5rbs350.7016 and the re-
sults of the corresponding one-dimensional dens
functional program. To save space we do not show th
plots here, but only note that the density profile evaluated
us agrees rather well with the one given in Ref.@21# their
Fig. 2, although the height of the first maximum is sligh
overestimated~we obtained 4.298, whereas the simulat
value is 3.972@21#!.

Figure 2 compares the cut by the planex* 5x/s50.36
through the local densities evaluated from the present the
and from the GCEMC simulation for the system withg
5p/2 atrb* 50.7016. The agreement between the theoret
and simulational data is good.

Examples of the local densitiesr(x50,z), evaluated at
different bulk densities and for the systems with differe
anglesg5p/3, p/2, and 2p/3, are displayed in Fig. 3. Simi
larly to the case of the GCEMC simulations, a decrease
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the dihedral angleg causes a substantial increase of the lo
density at contact. Indeed, atrb* 50.7 we haver* (x50,z
50)5r(x50,z50)s357.06 for g52p/3 and r* (x50,z
50)519.04 forg5p/3. This behavior is not suprising. Th
two walls forming the wedge squeeze the hard spheres
the corner and, obviously, this effect is more pronounced
smaller values ofg. The simulation contact density obtaine
from the GCEMC simulations of Schoen and Dietrich f
g5p/2 and atrb* 50.7016 is 14.34. Our result for the sam
point is 14.42, which is only slightly higher. Thus the agre
ment of the simulation and theoretical results is excelle
much better than we expected at the beginning of this stu

The distance between the first and the second den
peaks depends on the angleg. For g5p/2 this distance is
slightly higher than&s, which suggests that four particle
form a square at the corner of the wedge, even though i
itively we would expect a more closely packed structure. F
g5p/3, this distance is greater than 2. Again, this sugges
looser structure than one might expect, possibly result
from entropic effects. At the highest density there exist
small maximum in the middle of the first minimum.

Figure 4 gives further insight into the local densi
changes in the systems with differentg. Figure 4~a! shows
the cuts by the planesx50, 0.1s, 0.2s, 0.3s, and 0.4s
through the density profile forg5p/2 and atrb* 50.7. We
see here that with increasingx, the subsequent maxima ar
converted into minima and vice versa. Figure 4~b! illustrates

FIG. 4. Curves from left to right are the cuts of the dens
profile for g5p/2 and rb* 50.7 by the planesx50, 0.1s, 0.2s,
0.3s, and 0.4s, respectively.~b! Cuts of the density profiles forg
52p/3 ~dotted line!, p/2 ~dashed line!, andp/3 ~solid line! by the
planex50.4s. The bulk density isrb* 50.6.
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FIG. 5. ~a! Three-dimensional profiler(x,z) and ~b!–~d! the contour plots for three selected dihedral angles~a! and ~b! g5p/2, ~c! g
5p/3, and~d! g52p/3. All calculations are forrb* 50.7.
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the variation of the cuts of the density profile by the pla
x50.4s with g andrb* 50.6.

A more detailed structure of a hard-sphere fluid in a h
wedge emerges if one displays three-dimensional plots
r(x,z) and makes contour map plots of these profiles~see
Fig. 5!. Comparing the contour maps forg5p/2 and 2p/3
@Figs. 5~b! and 5~d!# with the corresponding plots of Schoe
and Dietrich, we can conclude that the structure of the fl
predicted by the density-functional approach is at least qu
tatively the same as the results from the GCEMC simu
tions. Forg5p/2, a second maximum ofr(x,z) is at a dis-
tance close to&s from the point at which the fluid is in
contact with the wall along the linex50. This plot shows
also that the first minimum, centered atx50, appears half-
way between the point of the fluid-wall contact and the s
ond maximum, as expected from geometrical considerati
In the x direction, the second maxima are framed by tw
minima @because of the symmetry, only one of them is d
played in Fig. 5~b!#, separated from the first maximum by
distance approximately equal to 0.5s.

The fluid structure evaluated forg5p/3 exhibits the ex-
istence of a second maximum along the linex50 at the
distance greater than 2s from the contact fluid-corner point
This maximum is separated from the first by a widespre
minimum and surrounded from both sides~x,0 andx.0!
d
of

d
li-
-

-
s.

-

d

by two minima. However, forg52p/3 a typical configura-
tion at the wedge is distinct. Two minima framing the seco
maximum have vanished and the contour lines are alm
parallel to the solid walls.

IV. CONCLUSIONS

Most previous applications of density-functional theory
inhomogeneous fluids have been to systems with o
dimensional symmetry. In this study, we show that this a
proach is also successful for more complex geometries.
have obtained pleasing agreement with the recent sim
tions of Schoen and Dietrich. We hope to apply our multi
mensional density-functional algorithm to a wide variety
inhomogeneous fluids near heterogeneous surfaces an
complex pores.
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